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Drop fall-off from pendent rivulets
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Drops fall off a viscous pendent rivulet on the underside of a plane when the
inclination angle θ, measured with respect to the horizontal, is below a critical value
θc. We estimate this θc by studying the existence of finite-amplitude drop solutions
to a long-wave lubrication equation. Through a partial matched asymptotic analysis,
we establish that fall-off occurs by two distinct mechanisms. For θ > ϕ, where ϕ is
the static contact angle, a jet mechanism results when a mean-flow steepening effect
cannot provide sufficient axial curvature to counter gravity. This fall-off mechanism
occurs if the rivulet width B, which is normalized with respect to the capillary length
H = (σ/ρg cos θ)1/2, exceeds a critical value defined by β = − cosB > 1/4. For
θ < ϕ, the normal azimuthal curvature is the dominant force against fall-off and
the azimuthal capillary force. The corresponding critical condition is found to be
1.5β1/6 > tan θ/ tanϕ. Both criteria are in good agreement with our experimental
data.

1. Introduction
Many hydrodynamic instabilities are known to yield localized structures in addition

to or instead of the classical global sinuous waves with a narrow band of Fourier
modes. The latter wave field consists of waves much shorter and smaller than the
characteristic depth of the system and is commonly known as a short-wave instability.
Near criticality, the dynamics of these small and short waves is well-described by the
traditional weakly nonlinear amplitude equations, like the coupled complex Ginzburg–
Landau (CGL) equation (Manneville 1990). The width and amplitude of the localized
structures, on the other hand, are much larger than the characteristic system depth.
They are hence referred to as a long-wave instability (Van Hook et al. 1995) even
though their structures are not at all wave-like. A rational theory for the existence and
dynamics of these localized structures is an active area of research in hydrodynamics
and we examine a specific example here.

There is growing evidence that many classical hydrodynamic instabilities are dom-
inated by the localized structures. Localized patterns, in addition to short waves,
are observed in Couette flow (Cherhabili & Ehrenstein 1995), Faraday instability
(Kudrolli & Gollub, 1996) and in shear boundary layer instabilities (Kachanov 1994)
where the waves at inception are clearly of the short variety but they seem to syn-
chronize to form the localized structures. However, localized structures are most
prevalent in interfacial instabilities where even the small-amplitude waves at incep-
tion are long and they ‘focus’ into the localized structures. Falling-film wave dynamics
is dominated by localized ‘pulses’ (Pumir, Manneville & Pomeau 1983; Chang 1994)
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and drops (Quere 1990). Dry spots that form on heated films (Joo, Davis & Bankoff
1991a) and films undergoing Marangoni convection (Van Hook et al. 1995), slugs that
grow from stratified gas-liquid flow (McCready & Chang 1996), bubble formation
in capillaries (Hammond 1983; Aul & Olbricht 1990), beading from narrow rivulets
with mobile contact lines (Young & Davis 1987) and from liquid cylinders (Russo &
Steen 1989) are all examples of localized interfacial structures.

Once formed, these localized structures interact with each other and with the short
waves. The interaction often involves irreversible coalescence of two structures or
absorption of short waves so the wave texture actually coarsens (Chang, Demekhin
& Kalaidin 1995). However, an even more intriguing dynamics of the localized
structures is that they can grow very rapidly in amplitude while retaining their width.
This phenomenon is observed in dry spot formation (Van Hook et al. 1995), drop
ejection from localized structures in the Faraday instability, drop formation during
wire coating (Quere 1990) and, in general, any drop ejection or fall-off mechanisms.
The growth is so rapid and the structure so localized in space that, if the model
equation is incapable of such resolution, the phenomenon is described by a finite-time
‘blow-up’ solution to the equation. Since blow-up solutions can now be detected
numerically and sometimes estimated analytically, there is considerable interest in
using the blow-up behaviour to predict the onset of drop formation, ejection or fall
off. Joo, Davis & Bankoff (1991b) and Rosenau, Oron & Hyman (1992) numerically
explored a large class of lubrication equations and found blow-up behaviour in many
of them. These Benney-type equations assume that the structure amplitude is much
smaller than its width. Any structure with an aspect ratio of unit order would escape
the description of the lubrication equation and their formation would correspond to
a blow-up behaviour.

In the numerical studies of Joo et al. (1991b) and Rosenau et al. (1992), it was found
that blow-up can be suppressed when a mean-flow term is added to the lubrication
equation. This is consistent with the numerical results of Van Hook et al. (1995)
and Joo et al. (1991a) for dry spot formation on a heated film. On a horizontal
film, a blow-up solution, which resembles the experimentally observed dry spots, is
always detected from the lubrication equation. However, when the plane is tilted, such
solutions are not observed and dry spots do not appear in the experiments either.

However, numerical search for blow-up behaviour is extremely tedious and an
analytical estimate of its existence would be most convenient. Oron & Rosenau
(1989) and Chen & Steen (1996) examined the existence of saturated small-amplitude
solutions to the lubrication equations and use that as a sufficient condition for
blow-up not to occur – their non-existence is a necessary condition for blow-up.
Their saturated solutions are assumed to be either spatially periodic or confined to
a finite box to simplify the bifurcation analysis. While this is a valid description to
study whether liquid drains out of a finite slot due to Rayleigh–Taylor instability, it is
generally not accurate for the evolution of localized structures in an extended domain.
There, the existence of saturated periodic waves does not preclude the occurrence
of blow-up. This is clearly seen in Van Hook et al.’s (1995) numerical solution of a
particular lubrication equation where both solutions are observed. (Both structures
are also observed in their experiments.)

In a recent study, Kalliadasis & Chang (1994) proposed another theoretical estimate
of blow-up. They suggested that the localized blow-up behaviour is related to
saturated localized traveling waves – solitary waves. These resemble the blow-up
solution in shape but instead of growing, they translate at a constant speed. When
the solitary waves exist and are stable, they are assumed to be the attractors to
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all initial conditions and blow-up behaviour seems to be absent. It is only when
they cease to exist that blow-up ensues. The non-existence of such solitary wave
solutions to the lubrication equation then offers a good estimate of the onset of
blow-up behaviour. Moreover, the solitary wave solution branch to the long-wave
lubrication equation typically ceases to exist when the crest amplitude approaches
infinity. While this limiting member of the branch obviously violates the long-wave
approximation, it introduces a solitary wave structure with widely different length
scales such that the structure and location of the limiting member can be obtained
via matched asymptotic analysis. Simple criteria for the existence of solitary waves
and estimates for blow-up behaviour can then be readily obtained.

This approach was successfully applied to explain Quere’s data on the formation
of large capillary drops, which violate the scalings of the lubrication equation, on a
vertically coated wire. We found by matched asymptotic analysis that the localized
solitary wave solution ceases to exist when the substrate thickness beneath it exceeds
a critical value. The physical mechanism is again due to mean flow, as we shall detail
subsequently. In our numerical simulation and those by Kerchman & Frenkel (1994)
with a lubrication equation, the flat film (annular film around the wire) evolves into
a series of solitary waves which interact and coalescence irreversibly to form larger
solitary waves. Due to mass conservation, the local substrate layer thickens as the
solitary wave density decreases and the critical value where no solitary wave solution
exists is reached eventually. At this instant, blow-up behaviour is observed. This
blow-up represents the physical formation of large capillary drops on the wire which
are beyond the description of the lubrication equation. Our analytical criterion is
found to be in excellent quantitative agreement with both the numerical simulations
for blow-up and the physical measurements for drop formations.

In this paper, we apply the same technique to determine whether drops will fall
off a pendent rivulet on the underside of a tilted plane. Unlike overlying rivulets
on the top side (Weiland & Davis 1981; Young & Davis 1987), transverse surface
tension forces of the meniscus actually have a stabilizing effect in countering the
destablizing effect of gravity. Rothrock (1968) carried out a linear stability analysis
based on a lubrication approximation and obtained the onset conditions for waves
on a pendent rivulet as well as their speeds and wavelengths. These are confirmed
by his experimental measurements. He also noted that these initial disturbances
evolve quickly into localized solitary waves (drops) which can remain on the rivulet
indefinitely or grow into much larger drops and fall off the rivulet. We shall study this
demarcation carefully in our experiment and show that there is a critical inclination
angle θc with respect to the horizontal when the fall-off begins. We shall show
from a lubrication analysis that mean flow can again produce a saturated drop
solution analogous to the solitary wave solution for θ larger than θc. It is when
this and another stabilizing effect cannot counter the pull of gravity at smaller θ
that the saturated solitary wave solution ceases to exist and a large drop quickly
forms and falls off. As represented by the two-dimensional lubrication equation, such
limiting members of the drop family have a front face with either an infinite slope
(the equivalent of an infinite-amplitude solitary wave in Kalliadasis & Chang 1994)
or a negative curvature. For conditions beyond the existence of these limiting drop
solutions, the time evolution of the three-dimensional lubrication equation presumably
leads to blow-up or singularity formation. However, the complexity of the present
transient problem prevents a numerical confirmation of these behaviours similar to
those carried out by Kalliadasis & Chang (1994) and Kerchman & Frenkel (1994) for
drops on fibre. The additional dimension of a three-dimensional rivulet also renders
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the matched asymptotic construction of the limiting solitary drop solution difficult
and only estimates of its existence are offered. Nevertheless, these estimates are in
good agreement with our experimental data for fall-off and they represent the first
application of this approach to realistic three-dimensional drop fall-offs.

It is important to note that while the drops are held by surface tension against the
pull of gravity, the effect of surface tension is entirely determined by the shape of the
drop. The shape, in turn, is governed by the rivulets in front and behind the drop
due to a quasi-balance of forces. When viscous flow effects are just as dominant as
capillary and gravitational forces in the rivulets, the ability of the drop to remain on
the rivulet is very much dependent on the mean flow. For this reason, our fall-off
mechanisms are distinct from instability of purely static pendent drops.

The physical mechanism behind how mean flow arrests localized growth deserves
more study. Consider a thin lubricating film draining by gravity on either side
of a plane inclined at an angle θ with respect to the horizontal. The flow rate q
per cross-stream span width is determined by the balance between the tangential
gravitational pull g sin θ and kinematic viscosity ν, q = g sin θh3/3ν, where viscosity
stipulates that the velocity profile is parabolic below the local interfacial height h.
This scaling for gravity-driven flow of a viscous fluid provides a unique interfacial
kinematic wave speed in the streamwise direction. The kinematic condition from mass
conservation, ∂h/∂t = −∂q/∂x, stipulates that the local wave speed, which is distinct
from the fluid velocity, is 3g sin θh2/3ν or three times the average velocity q/h. This
is consistent with the classical result on the phase speed of small-amplitude waves
on a nearly flat falling film on the top side of an inclined plane (Benjamin 1957;
Yih 1963). However, it also has significant implications for the evolution of localized
interfacial structures in the presence of gravity. That the wave speed is higher at a
larger interfacial height implies that any localized positive disturbance will steepen at
the front and become smoother at the back. Without surface tension, the nonlinear
hyperbolic equation from the kinematic equation actually predicts the formation of
an infinite-slope front in finite time. With surface tension, the above gravity–viscous
steepening will stop at a finite slope due to the smoothing effect of capillarity which
counters the formation of sharp interfacial fronts. The resulting asymmetric localized
structure with a steep front, frequently preceded by some small capillary ripples, and
a smooth back is found in many gravity-driven, thin-film flows where surface tension
effect is important. Solitary pulses on a planar falling film (Chang 1994), drops in
fibre coating (Quere 1990), fronts and fingers in a thin gravity current (Huppert 1982),
drops on a rivulet, etc. all possess this unique steep-front structure. While this gravity
steepening mechanism increases the interfacial slope at the front, it does not increase
the amplitude of the initial disturbance. Quite the contrary, it is responsible for a
unique strongly nonlinear stabilizing mechanism that reduces fluid drainage into the
wave crest. The steepened front increases the axial interfacial curvature and hence
induces a higher capillary pressure within the liquid immediately beneath the crest.
This higher pressure reduces the flow into the crest and counters any destabilizing
mechanism that magnifies the crest amplitude. On a falling film on top of an inclined
plane, the growth in the wave crest stops and ‘saturated’ solitary pulses are formed
when this effect balances the inertia-driven destabilizing mechanism. In fibre coating,
it counters the Rayleigh azimuthal instability to specify the dimension of the drops
(Kalliadasis & Chang 1994).

For the pendent rivulet, drainage into the drop is countered not only by the
mean-flow-enhanced axial curvature but also by the azimuthal curvature. As a result,
the saturated localized structure is actually a solitary drop with a surface-tension-
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rounded cross-section and a mean-flow-steepened front face. Since there are two
restoring forces, the solution ceases to exist when either one cannot overcome the
gravitational pull at its respective station. There will hence be two fall-off mechanisms:
one corresponding to the failure of the axial curvature and one to the failure of the
azimuthal curvature.

In §2, we detail our experimental measurement of the fall-off condition θc and
demonstrate evidence of the two distinct fall-off mechanisms. In §3, we derive the
lubrication equation from which we shall study the existence of saturated small-
amplitude drop solutions. This is done in §4 with a matched asymptotic analysis for
the three-dimensional solitary drop. Matching is only possible when two criteria, cor-
responding to the two fall-off mechanisms, are satisfied. These criteria are favourably
compared to our experimental data in §5 where a summary and some discussion are
also offered.

2. Experiments
Our experimental set-up is shown in figure 1. A glycerin–water solution is used for

most of our experiments. Due to the large difference (two orders of magnitude) in
the viscosity of glycerin and water, the solution provides a large range of viscosity
(1 to 3 cm2 s−1) simply by changing its composition via absorption of air moisture
during our experiment. By carefully monitoring the viscosity, we can actually obtain
the pertinent data for a wide range of physical properties without changing the
fluid. The static contact angle of the glycerin–water solution is difficult to monitor
continuously. Fortunately, its surface tension and wetting properties are insensitive
to water composition and hence remain constant even as the viscosity changes. The
solution is pumped from the lower tank 2 by a peristaltic pump 3 to upper tank
4. It overflows tank 4 on one side and a flat film is formed immediately on this
vertical wall of tank 4. This film then flows around a cylinder 5 and onto the bottom
of the inclined plane 1. All the above parts, including the inclined plane, are made
of Plexiglas. Inclined plane 1 (width 15 cm and length 54 cm) can be tilted at any
inclination angle θ with respect to the horizontal in the range of 5◦ and 85◦. It is
mounted flush against the feeding cyclinder to minimize any distortion of the film.

Rothrock (1968) has observed that a flat film on the underside of a plane destabilizes
rapidly to form rivulets as a result of surface tension and gravity. A few centimetres
downstream from the cylinder, these two forces begin to pull the outer edges of the
film towards the middle to form a wedge shape. After a few more centimetres, the
film has converged into a single straight rivulet which does not change its width for
the remaining length of the plane. Since the glycerin–water solution does not wet the
plane perfectly and the rivulet amplitude is relatively small, the cross-section of this
rivulet resembles a segment of a cosine function. We did not measure this precisely
since Rothrock has already confirmed the accuracy of this static cross-section for
small-amplitude pendent rivulets.

While overlying rivulets generally suffer from a Rayleigh pinching instability and
an inertial meandering instability (Weiland & Davis 1981; Young & Davis 1987) and
the pendent rivulets should also be vulnerable to both, neither was observed. This
was explained by Rothrock’s linear instability theory of pendent rivulets which shows
that for the viscous ones studied here, gravitational pull is the dominant destabilizing
force. Small-amplitude sine waves generated by this instability are evident about
10 cm from the feeding cylinder (for θ ∼ 30◦) and they rapidly focus into localized
drop structures which glide down the rivulet at a large but constant speed.
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Figure 1. Schematic of experimental set-up. The numbered parts are described in the text.

The drops can be of various amplitudes but they are always localized in length
and width. Their aspect ratio (amplitude over length) is also quite small under most
conditions except when they begin to fall off. This occurs when θ falls below a critical
value θc which depends on the flow rate q and the fluid properties. It is this θc that
is of interest here.

Each measurement of θc at a given flow rate is preceded by extensive prepara-
tion. The inclined plane is wetted at a vertical position to reduce the influence of
imperfections on the wettability of the Plexiglas. At this time, a flat film exists on
the entire plane. After some time dewetting occurs and a single straight rivulet is
formed on the dry plate. The inclination angle is then decreased slowly in steps of
1◦. As the inclination angle decreases, the width of the rivulet also decreases slightly
due to the effect of gravity as the contact lines move in towards the centre of the
rivulet. This motion of the contact line is very slow and it is necessary to wait about 5
minutes each time the inclination angle is changed in order to equilibrate the rivulet.
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To the contrary, the width of the rivulet does not change if the inclination angle
is increased, hence showing a hysteresis effect with respect to the inclination angle.
Precise measurement of the width of the rivulet as a function of the inclination angle
and flow rate is not carried out but it is always of the order of 1 cm. (Our theory
does not provide an accurate estimate of the width. Comparison to experimental data
is made through the flow rate and inclination angle, which are accurately estimated
and measured.) Due to this hysteresis effect, the rivulet should be created in a similar
way every time. Hence, to ensure the reproducibility of the results, the inclination
angle is always varied by decreasing it.

The flow rate q and the critical angle θc are measured very carefully to allow
comparison with our theory. Although the theory requires information on the
contact-angle ϕ,we are unable to measure it or the cross-section shape of the rivulet
accurately with our flourescence technique because the rivulet acts as a lens with very
short focal distance. As a result, although the rivulet amplitude imaged from the side
can be measured, the profile is beyond this technique. However, an estimate of ϕ
can be obtained from the literature static contact angle data for water and glycerin.
Because we move the plate up very slowly, the width of the rivulet decreases in a
quasi-steady manner. Hence, as the rivulet shrinks, its dynamic contact angle should
be close to the receding one. We expect that when the inclination angle is higher
than θc, the dynamic contact angle then corresponds to the static value, i.e. it lies
between the receding contact angle and advancing one, but is closer to the receding
value. For a glycerin–water solution on Plexiglas, the static contact angle lies in
the range from about 50◦ up to 70◦, depending weakly on the composition and the
temperature. Although the viscosity of our glycerin–water solution is observed to
change by as much as 25% due to a 3 to 5% change in water composition, the value
of ϕ is expected to remain constant. We shall hence choose a value between 50◦ and
70◦ to fit our data but will use the same value for all conditions. This is the only
fitting parameter in our theory but it is confined to a narrow range.

At any fixed flow rate, the inclination angle is decreased in the above manner until
fall-off occurs. The inclination angle is measured by means of a protractor mounted
on the axis of rotation of the cylinder and is accurate to within ±0.5◦. Actually,
the major error in the determination of θc is due to ambiguity in our observation
of when the first fall-off occurs. At onset, the fall-off behaviour is very localized
and is intermittent in time. It hence requires a significant amount of time to ensure
that fall-off does occur for some drops. However, for only 1◦ or 2◦ below θc all
drops fall-off in a continuous manner. We hence expect θc to be accurate to within
3◦.

The flow rate and viscosity were measured immediately after each θc measurement.
The flow rate is determined by measuring the filling time of a cylinder of known
volume and is accurate to 5%. The viscosity was measured by means of an EZ-
cup viscosimeter and is accurate to 10%. During the course of our experiment the
viscosity can change by as much as 25% due to water absorption. Because of the
extreme sensitivity of viscosity to water content, a 3% change in water composition
can be responsible for this variation. Consequently, our data actually span a large
variation in the fluid viscosity and hence represent widely different fluid properties –
a fortuitous consequence of the hydrophobic tendencies of glycerin.

Fluorescein sodium salt is added to the solution after the critical angle measure-
ments to facilitate more detailed imaging of the drops and the fall-off dynamics.
A black lamp is placed above the system to induce flourescence in the dye. Since
the flourescence intensity is proportional to the amount of dye which is, in turn,
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Figure 2. Fall-off by the jet mechanism at high flow rates. A steepened hump is observed behind
the jet. (Glycerin–water solution, θ = 48◦, ν = 2.02 cm2 s−1 and q = 4.7 cm3 s−1.) The critical θc is
51◦ for this flow rate.

proportional to the film thickness, we are able to capture the interfacial shapes with
a high-resolution Kodak MegaPlus 1.6 digital video camera.

The fall-off occurs by several mechanisms. At high flow rates (q > 4.5 cm3 s−1 for
the glycerin–water solution), the steepened drops are barely visible and move at a
very high speed. Fall-off occurs at a small angle off vertical (large θ) and the liquid
leaves the rivulet as a distinct jet as seen in figure 2. A very long steepened drop,
with a small amplitude relative to the straight rivulet height and a gentle back slope,
is also seen behind the jet. We call this high-flow-rate fall-off mechanism at large θ
the jet mechanism. The profile of the long drop clearly takes on the linear shape of
a gravity-steepened front which is the mechanism that prevents drops from evolving
into jets under subcritical conditions below θc.

At intermediate flow rates (0.5 < q < 4.5 cm3 s−1), the rivulets are thinner and
the drops are more pronounced compared to the rivulet and move much slower in a
steady manner. The near-critical snapshot of figure 3 corresponds to this condition.
As θ decreases toward θc, the drops clearly increase their amplitude, whose value
relative to the rivulet dimension is much larger than the drops in figure 2, and steepen
their front which is smoother than for the high-flow-rate conditions. They hence
possess a more rounded structure than those in figure 2. After a few drops have fallen
off a rivulet near θc, the local flow rate is lower than the feed flow rate due to the lost
mass. Since θc decreases with decreasing flow rate (less gravitational pull for smaller
rivulets), the drops adjacent to the ones that have fallen off can actually survive the
traverse down the plane since they experience a lower flow rate. In the near-critical
condition of figure 3, one can hence see both subcritical (> θc) drops (front two)
that do not fall off and supercritical (< θc) drops (back two) that are in the fall-off
process. We can hence record drops at various conditions away from θc by imaging
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Figure 3. Fall-off at θc by the pinch-off mechanism. The last hump is barely supercritical while the
first two are barely subcritical. The subcritical drops traverse the entire plane without falling off.
Different drops are on different sides of criticality because, at this critical condition, a fallen drop
can reduce the local flow rate to subcritical values. (θ = 42◦, ν = 2.18 cm2 s−1, q = 2.27 cm3 s−1.)
The critical θc is 45◦ for these conditions.

the rivulet at θ close to θc. Snapshots of several drops prior to and during fall-off at
this critical condition are shown in figure 4. While front steepening is observed, drops
at this intermediate flow rate do not steepen to the extent of high-flow-rate fall-off.
Instead, as seen in figures 4(c) and 4(d) and in the profiles shown in figure 5 from
image processing of other snapshots, their front faces flatten and change curvature by
losing their convexity such that the cross-section of the drop at that region resembles
a two-dimensional pendent drop that is about to pinch off at it neck. A significant
overhang at the front of the drop is seen in figure 4(d) and in figure 5. Beyond that, the
drop beads up and pinches off from the rivulet as shown in figure 3. We refer to this
intermediate-flow-rate mechanism as the pinching or pinch-off mechanism where the
kinematic front-steepening effect of increasing the normal curvature is less important
because of the lower flow rate. It is still necessary, however, since it conspires with
the increased front face curvature due purely to capillarity to pinch off the drop prior
to fall-off.

At extremely low flow rates (q < 0.5 cm3 s−1), the rivulet is too thin to feel a
significant gravitational pull. The disturbances hence amplify very slowly and only
at near-horizontal small-θ conditions such that small-amplitude waves triggered at
the inlet do not have time to evolve into drops individually. Instead, they coalesce
to form larger drop-like structures that fall off under supercritical conditions. This
mechanism is similar to falling film dynamics on the top side of a plane (Chang et al.
1995). It occurs only at very low flow rates when the rivulet is thin and narrow and
will not be scrutinized in detail here.
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(a) (b)

(c) (d)

Figure 4. Four humps (drops) observed at θ = θc at various stages of evolution towards pinch-off.
They correspond to quasi-steady humps on the hump solution branch with increasing proximity to
the critical pinch-off hump solution. The humps steepen and increase their amplitude while their
front faces flatten and begin to develop a negative curvature in (c) and (d). (The conditions are
θ = 36◦ ∼ θc, q = 1.4 cm3 s−1 and ν = 1.92 cm2 s−1.)

A set of recorded raw data for θc of the glycerin–water solution is shown in figure
6. The intermediate-flow-rate pinching mechanism yields a distinctly different θc
dependence on q from the jet mechanism at higher flow rates.

3. Derivation of the lubrication equation
For the flow rates where drop fall-offs are observed in our experiments, the Reynolds

number never exceeds unity. This suggests that the inertia instability discovered by
Weiland & Davis (1981) for overlying rivulets is not important here. A lubrication
approximation which ignores inertia or ‘dynamic pressure’ is then valid for these
low-Reynolds-number rivulets. However, the usual long-wave approximation in a
two-dimensional lubrication approximation also requires that the normal scale in y
or the interfacial height be smaller than the tangential length scales x (downstream
coordinate) and z (transverse coordinate). Our subcritical drops (θ > θc) have very
gentle slopes in profile and hence the long-wave approximation in x is valid. However,
critical drops near fall-off often have very steep front faces (figures 3 and 4) with
slopes of unit order. Moreover, the static contact angle ϕ is in excess of 45◦ which
also implies that the long-wave approximation in z is questionable.

A possible remedy to the above problem is to retain the full curvature expression
in the lubrication analysis (Rosenau et al., 1992) While the ‘regularization’ is incom-
patible with some of the other long-wave approximations made in the derivation of
the Benney-type lubrication equation, Rosenau et al. have shown that they suppress
the blow-up behaviour observed in the usual Benney equation for overlying films with
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Figure 5. Profiles of drops at θ = θc for the pinch-off mechanism, showing the flattened front face
and the overhang with a two-dimensional necking pendent drop cross-section. (The conditions are
θ = 45◦ ∼ θc, q = 2.27 cm3 s−1 and ν = 2.18 cm2 s−1.)

inertia where such behaviour is obviously not physical. (Large structures that violate
the long-wave approximation have never been observed for overlying films at low
Reynolds numbers.) However, drops do fall off from a pendent rivulet and we expect
blow-up to also occur for a ‘regularized’ lubrication equation which retains the full
curvature expression, although it may occur under more severe conditions than the
long-wave equation. Since the latter is much easier to analyse, we prefer to use it in
our analysis but our result will be a necessary condition for blow-up. To examine
how close this necessary condition is to the exact condition, we shall compare our
approximation solution to a particular solution which retains the full curvature and
to actual near-critical drops. We shall show that the x-expansion faithfully captures
the slope of the front face and the curvature of the back face of the drop, the most
important features of the solution, even though the expansion is strictly invalid there.
For the long-wave z-expansion, drop fall-off is dominated by the force balance along
the centreline of the pendent rivulet where the gravitational head is largest. The
azimuthal slope hz and the curvature are indeed small here along the centreline and a
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Figure 6. A typical set of fall-off data for the glycerin–water solution with error bars attached.
The jet asymptote β = 1/4 and the limiting β = 0 pinching asymptote are shown. Both are used to
determine the static contact angle ϕ.

long-wave approximation can be made. We shall assume that this approximation can
be extended to the contact lines where hz ∼ tanϕ is of unit order and the approxi-
mation is strictly invalid. While the resulting cross-section profile is definitely in error
near the contact lines, the flow rate and the fall-off mechanism are faithfully captured
since both are dominated by the flow near the centreline. Analysis without invoking
this lubrication approximation is simply too complex since the outer drop solution
corresponds to a three-dimensinal solution of the full Laplace–Young equation. Even
numerical solution with a boundary condition that varies along the contact line, due
to matching with the inner rivulet solutions, is extremely difficult. Some justification
of this approximation was offered by Rothrock (1968) who found the straight-rivulet
flow rate obtained by the long-wave theory to be close to the measured ones. This
will again be verified by our experimental data later in this section. The long-wave
approximation in z is actually valid for relatively flat rivulets of more-wetting fluids
with small ϕ. However, we were unable to find a convenient fluid for our experiments
that has a small ϕ.

With the above assumption, a full lubrication equation for flat rivulets with reflec-
tion symmetry across the centreline can be derived with the usual long-wave expansion
(see Joo et al. 1991a, for example). It yields locally parabolic velocity profiles in the
x- and z-directions that are functions only of the normal coordinate y and the local
interfacial height h(x, z, t). The latter dependence comes from the interfacial normal
stress jump condition containing the capillary effect. The curvature

κ = −hxx(1 + h2
z) + hzz(1 + h2

x)− 2hxhzhxz
(1 + h2

z + h2
z)

3/2

for the capillary term is approximated by the usual long-wave expansion κ ∼ −(hxx +
hzz) as explained earlier. The film-averaged kinematic condition then yields the
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required lubrication equation

∂h

∂t
+
g sin θ

3ν
(h3)x +

g cos θ

3ν
∇ · (h3∇h) +

σ

3µ
∇ · (h3∇3h) = 0, (3.1)

where ∇ = (∂/∂x, ∂/∂z)T is the two-dimensional del operator. The second term
represents the front-steepening, gravity-driven tangential mean-flow term while the
third and fourth terms represent flows induced by the destabilizing gravitational pull
in the y-direction normal to the plane and the stabilizing capillary force respectively.

Equation (3.1) admits a uniform rivulet solution governed only by gravity and the
azimuthal capillary force,

h∗(z) =
H tanϕ

sinB
[cos(z/H)− cosB], (3.2)

where H = (σ/ρg cos θ)1/2 is the capillary length specified by surface tension and the
normal gravity pull and ϕ is a static contact angle. The parameter B is the half-width
of the rivulet scaled with respect to H . The cross-section of the rivulet is hence a
segment of the cosine curve. For B = π/2, the contact lines lie exactly along the
zeros of the cosine curve. The value of B can vary from 0 to π and is defined by the
requirement that a continuous mean flow, fed from the top of the plane, flows down
the x-direction.

This straight-rivulet solution hence involves only a static cross-section satisfying
a long-wave two-dimensional Laplace–Young equation in y and z. With a specified
contact angle ϕ, there is a family of these solutions parameterized by the rivulet
half-width B, and B must then be determined by stipulating that the flow through the
rivulet is consistent with the feed flow rate. From the original parabolic lubrication
approximation of the velocity profile, the flow rate q through this rivulet is

q =
2g

3ν

(
σ

ρg

)2
tan θ

cos θ

(
tanϕ

sinB

)3 ∫ B

0

(cos z − cosB)3dz, (3.3)

where z in (3.3) is the dimensionless version scaled by H . Note that (3.2) and (3.3)
hold only for the case of partially wetting fluid. For the special case of a completely
wetting fluid, B = π and the static straight-rivulet solution becomes

h∗ =

(
3

5π

ν

g(σ/ρg)1/2
q

cos1/2 θ

sin θ

)1/3

(cos(z/H) + 1). (3.4)

In the analysis below we shall only consider the case of partial wetting.
The full Laplace–Young equation with full curvature for the cross-section of a

straight rivulet can be solved without considerable effort. A computed profile with
the same height hmax and contact angle ϕ = 50◦ as the long-wave approximation (3.2)
is compared to the latter in figure 7. It is evident that the profile near the centreline
where the slope is gentle is faithfully captured by the simple expression while the
profile near the contact line, including the width, is not estimated well. However,
since fall-off occurs from the centreline, we expect our estimate of blow-up from the
long-wave equation to be an accurate one. Since most of the flow is also near the
centreline, we have also compared (3.3) to the flow rate calculated from a cross-section
governed by the full Laplace–Young equation in figure 8 for various values of hmax
and ϕ. For the regions of interest in this analysis, (3.3) is accurate to within 5% of the
solution with the full curvature in z. This partially justifies the long-wave expansion in
z but the accuracy of our estimate must still await a comparison to experimental data.
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Figure 7. Examination of the long-wave approximation. In (a), the cross-section profile of a
straight-rivulet equation from a long-wave approximation in z and from the full Laplace–Young
equation for the same rivulet height hmax and same static contact angle ϕ are shown. While the
width B of the rivulet and the profile near the contact line are poorly captured by the long-wave
approximation, the curvature at the centreline where fall-off occurs is accurately captured. In (b) the
drop and rivulet solutions from our matched asymptotic analysis are compared to a photographed
drop of the same length (34 pixels = 0.3 cm). While the drop amplitude is not captured by solution
I of the long-wave expansion in x, the slope of the front face and the curvature of the back, which
are required for the matched asymptotic analysis, are captured by solutions II and III respectively.

We find it convenient to scale x and z by H and h by (H tanϕ/ sinB) even though
these are not necessarily the natural length scales for the various regions in figure 7.
Nevertheless, the straight-rivulet solution (3.2) now becomes simply

ξ(z) = cos z − cosB (3.5)

which is a segment of the cosine curve symmetric about the centreline z = 0. The half-
width of this normalized straight rivulet is B, its height ξ0 = ξ(0) is 1− cosB ≡ 1 + β
and its dominant centreline azimuthal curvature is −1. The straight rivulet is hence
conveniently represented by the parameter B or β = − cosB in this representation
where B varies only from 0 to π and β from −1 to 1. We shall associate the
critical condition to β and show that drops do not fall off rivulets with flow rates
corresponding to β between 0 and 1/4, a rather narrow range such that cosB is
essentially zero and sinB unity. The cross-section of the straight rivulets at these
particular limits correspond to symmetric cosine curves. The base line of the former
(β = 0) connects the two zeros of the cosine function and while the latter has only
a slightly larger base line. We shall exploit the fact that β is small (β < 1/4) within
these limits to carry out an expansion in β.

Note that a uniform rivulet has no natural length scale in the x-direction. Due to
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Figure 8. The straight-rivulet flow rate from the full Laplace–Young equation and from the
long-wave approximation at various contact angles ϕ. Within the domains of interest be-
tween cosB = 0(β = 0) and cosB = −1/4(β = 1/4) and ϕ = 50◦ to 70◦, the long-wave
approximation yields an estimate of the flow rate to within 5%.The flow rate is scaled by
Q0 = (2/3)(g sin θ/ν)H4 tan3 ϕ.

the stabilizing effect of the azimuthal curvature, the phase speed and the growth rate
of the most unstable ‘normal mode’ disturbances are smaller than those for a flat film
with the same flow rate per unit width and the wavelength of such disturbances is
several times larger than the flat film value of 2π

√
2H . But because we are interested

in a large-drop solution with a large variation of scales across the drop, we shall keep
this scaling x for now. The actual length scales for different parts of the drop will be
determined later.

Equation (3.1) hence becomes, after the scaling,

αξ2
0

∂h

∂t
+ α(h3)x+ ∇ · (h3∇[h+ ∇2h]) = 0 (3.6)

where α = sinB tan θ/tanϕ and time has been scaled by H/U where

U =

(
gH2 sin θ

3ν

)(
tanϕ

sinB

)2

ξ2
0

is the characteristic velocity within the rivulet (U is equal to 2/3 of the maximum liquid
velocity). The problem is hence parameterized by two parameters α and β = − cosB.
For a given fluid at a particular flow rate q and inclination angle θ, the continuous
mean-flow expression (3.3) defines a unique pair of β and α. The uniform-rivulet
solution is unstable for some flow rates and inclination angles (or α and β). We shall
determine whether the mean-flow and capillary stabilizing effects allow a large-drop
solution to exist instead. When the gravitational pull exceeds these effects such that
a feasible drop solution ceases to exist, the fall-off phenomenon ensues. In general, α
can vary from zero to infinity. However, in the pertinent range of small β, α is either
a small number or a number of unit order. We shall also expand α in some power of
β. This leaves only one small parameter β for the entire problem.
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As the straight rivulet destabilizes, our experiments show that its width B remains
constant for a particular flow rate and θ while the height grows into localized drops.
The contact-line resistance at the edge of the rivulet is simply too large for it to
expand widthwise. Kinematic considerations in the scaling arguments of §1 dictate
that the initial speed of the growing drop scales as the square of the drop amplitude.
There is hence a rapid acceleration as the drop grows. However, when the drop grows
to an amplitude much larger than the rivulet height in front and behind it (see figure
4), the speed of the drop is determined by how fast fluid drains in and out of the
back and front rivulets, respectively. Because of the large difference in the scales
across the drop, capillarity becomes as important a driving force for flow as gravity.
Hence, the h2 kinematic wave speed by considering gravity alone becomes invalid.
Capillarity also arrests the gravity-driven growth of the drop such that a steady drop
which translates at a constant velocity c is reached eventually, if fall off does not
occur.

We hence seek a steady solution to (3.6) in a frame moving with speed c,

− αcξ2
0hx + α(h3)x + ∇ · (h3∇(h+ ∇2h)) = 0 (3.7)

with the condition that a straight rivulet is reached at the two infinities

h(x→ ±∞) = ξ(z). (3.8)

As is consistent with the approach described in §1, we seek the limits when a
physically feasible finite-amplitude drop solution to (3.7) and (3.8) becomes impossible
in the following analysis and associate them to the fall-off conditions.

4. Matched asymptotic analysis
Solution of (3.7) with boundary conditions (3.8) is difficult both numerically and

analytically. However, we are aided by the observation that the near-critical steady-
travelling saturated drops in our experiment have several very different length scales
as do all localized solutions. In the middle of the drop, the drop height is so large
that viscous effect becomes unimportant and the drop is essentially a static one with
steepening due to the mean-flow effect. Away from the drop, however, the interfacial
height decays very rapidly to that of the straight rivulet in (3.5) which is about 3 to
5 times smaller. With this drastic reduction in amplitude, the gravitational head in
the normal direction becomes negligible and the dominant forces are now capillary
and viscous forces. As a result, the equation can be simplified and becomes partially
solvable at the drop and at the front and back rivulets. The solutions can then
be matched to yield an estimate of the full solution and to determine the latter’s
existence. This matched asymptotic expansion is analogous to the matching of thin-
film inner solutions to static outer solutions in the studies of steady replacement of
liquid by air in a capillary (Bretherton 1961) and steady drops sliding on a coated
wire (Kalliadasis & Chang 1994). The present matched asymptotic problem has the
complexity of an additional dimension and our matching will not yield a closed-form
solution. However, the existence of the final solution can still be estimated to offer
convenient fall-off criteria.

One welcome simplification of the pertinent partial differential equation is that it
can sometimes be reduced to an ordinary differential equation like the one studied
by Bretherton (1961) and Kalliadasis & Chang (1994) with a similarity transform.
This self-similarity is based on the observation that the cross-section of the back
rivulet resembles that of a straight rivulet. Since the rivulet width remains the same,
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this suggests the back-rivulet solution is simply the straight-rivulet solution (3.5)
multiplied by an amplitude modulation f which is mostly a function of x only.

The large amplitude of the drop in region I in figure 9 relative to those of the
straight rivulets suggests that the viscous shear term −cαξ2

0hx in (3.7) is negligible
within the drop. However, the steepened asymmetric drop shape seen in figure 4
indicates that the mean-flow term α(h3)x must be of the same order as the capillary
and gravity terms. This mean-flow term is the same as the tangential gravity term in
a static drop and upon integrating (3.7) once, we get the long-wave Laplace–Young
equation in the moving coordinate for the static drop under an inclined plane

αx+ h+ hxx + hzz = A, (4.1)

where A is an integration constant, with boundary conditions h(z = B) = hz(z = 0) =
0 to ensure constant width and reflection symmetry in z. The mean-flow term gives
rise to the αx-term which represents hydrostatic head in the tangential x-direction
here.

While (4.1) corresponds to a long-wave static Laplace–Young equation, its dimen-
sional length scales are not just the capillary length scale H such that x ∼ O(1) from
scaling. This is because of the slender geometry of the rivulet and the cross-section
shape (3.5) which stipulate a different length scale. We shall show that the back-rivulet
solution is of the form h(x, z) = ξ(z)f(x, z) where f(x, z) is mostly a function of x. As
a result, for the solution of (4.1) to match the front solution, the normal gravitational
term and the axial curvature term must be of order

h+ hzz ∼ f(ξzz + ξ) = βfξ = βh.

Hence, balancing βh with αx and hxx, the tangential gravitational term in (4.1), we
obtain the horizontal scale x and the normal scale h for the static drop region

x ∼ O(|β|−1/2), h ∼ O(α|β|−3/2), (4.2)

where α and β are both small parameters. Bounds on the relative order of α and β
can be obtained by observing that h must be in excess of the unit amplitude of a
straight rivulet,

α = |β|n, 0 < n < 3/2.

The lower bound on n is due to the fact that α is at most unit order. A more
precise estimate of n will be introduced by the assumptions we make to render the
rivulet equations solvable. Scalings (4.2) also stipulate that hx ∼ α|β|−1 must be much
larger than hxx ∼ α|β|−1/2. This is the steepening effect of the mean-flow term (the
tangential gravitation term) which renders the front profile of the drop nearly linear
as seen in figures 4, 5, 7 and 9. The back profile, however, remains curved and is
tangent to the rivulet in the figures. This implies that the front and back scalings are
entirely different in the matching regions II and III.

The drop solution to (4.1) in region I can be obtained by eigenfunction expansion,

hd(x, z) =
A− αx
β

ξ(z) +

∞∑
n=0

cos(λnz)[Cnsinh(λ2
n − 1)1/2x+ Dncosh(λ2

n − 1)1/2x], (4.3)

where λn = (π/B)(n+ 1/2). Coefficients A, Cn and Dn are unknown and remain to be
determined from matching with the front- and back-rivulet solutions.

Since the rivulet width is constant across regions I to III where the variation in x
has been assumed to be gradual and since the dominant term in the drop solution
(4.3) in region I has a cross-section ξ(z) of a straight rivulet (3.5), we expect the front-
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Figure 9. The various regions of a steady hump length scales relative to the straight rivulet with
unit height. Region I is the static drop region, region II is the front matching region where the
large slope is of order α|β|−1 and region III is the back matching region where the slope vanishes

and the centreline curvature is of order α|β|−1/2

and back-rivulet solutions in regions I and III to have the form h = ξ(z)f(x, z) such
that the amplitude f(x, z) approaches unity gradually at x = ±∞ as the straight front
and back rivulets are approached. The envelope function f(x, z) describes how the
rivulet amplitude varies near the centreline. It captures the long-wave axial curvature

hxx = ξfxx, (4.4)

but for the long-wave azimuthal curvature,

hzz = ξzzf + 2ξzfz + ξfzz, (4.5)
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it shows, in addition to the straight-rivulet azimuthal curvature ξzz , the contributions
from the cross-rivulet variation of the envelope. Such variations arise from the
terms in the infinite series of the drop solution (4.3) in region I. They hence become
important in the matching regions II and III where the front- and back-rivulet
solutions meet the drop solution (4.3). (At x → ±∞, f approaches unity as the
straight-rivulet solution is again approached.) The three-dimensional structure of the
drop requires the matching to occur along matching lines xf(z) and xb(z) across the
centreline. In addition, the asymmetric shape of the drop solution (4.3) due to gravity
steepening stipulates the relative dominance of ξzz and fzz in the two regions and
provides different governing equations for f(x, z). Such relative dominance is also
reflected in the width of the two matching regions around xf(z) and xb(z) and this,
in turn, simplifies the equations for f to the extent they can be studied analytically.

The governing equation for the back rivulet in region III is especially simple. In
this region, the rivulet amplitude is that of a straight rivulet and hence h ∼ f ∼ O(1).
The matching occurs in some neighbourhood of the matching line xb(z). Because
of the limitation of our long-wave approximation in z, as is evident in figure 7, we
shall only carry out the matching near the centreline at z = 0. As is seen from the
discussion of the drop solution (4.3) in region I, the back profile of the drop is tangent
to the straight-rivulet solution in the matching region III. As a result, hxx is much
larger than hx which is the opposite of the case in the front matching region. Since
the curvature of the drop solution (4.3) in region I is α|β|−1/2, this dominant matching
specifies that the width of the matching region around xb(z) is α−1/2|β|1/4 since h ∼ f
is of unit order here. We shall require this width to be smaller than unity for our
simplified rivulet analysis to be valid. This yields α = |β|n, 0 < n < 1/2. This estimate
of the relative order n then replaces the previous upper bound of 3/2. This scaling
for the width of matching region III is indicated in figure 9. We also note that since
curvature is dominant in this back-rivulet region, the flow is driven by capillarity and
a stationary rivulet can only exist if the axial capillary term (h3hxxx)x in (3.7) matches
the viscous term −αcξ2

0hx. Since ξ0 and h are of unit order in region III, this yields
another estimate of the x-scaling (αc)−1/3 which combines with the former to yield

c ∼ α1/2β−3/4. (4.6)

Since α ∼ |β|n with 0 < n < 1/2, this implies that the drop speed c must be larger
than unit order to provide sufficient viscous dissipation to balance the capillary effect.

Based on the above scaling arguments for the back rivulet, we define a local unit
order coordinate around xb(z)

η =
x− xb(z)
Γ (z)

, (4.7)

where Γ (z)�1 is the width of order (αc)−1/3 and xb(z) is of unit order since the origin
of the static drop (4.3) is at the front, xf(0) = 0, and the drop has unit length. Hence,
the decomposition hb(x, z) = ξ(z)f(η) yields

hz = ξzf −
(

dxb
dz

+ ηΓz

)
ξfη/Γ ≈ −

(
ξfη

Γ

)(
dxb
dz

)
, (4.8)

where the order assignment of unit order ξ, η, z and xb has been invoked. In essence,
this shows that the variation in the cross-rivulet z-direction near the back rivulet
is dominated by the variation in the envelope function f and not the azimuthal
curvature of the straight-rivulet solution ξ(z). This is also obvious from the sketch of
xb(z) in figure 9 which is almost tangent to the centreline x-axis. In contrast, xf(z)
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in the front matching region II is almost perpendicular to the centreline. Substituting
hb(x, z) = ξ(z)f(η) into (3.7), retaining leading-order terms in the matching region
III, which leaves only the viscous term and the capillary term, and invoking the
fact that the variation in z along the matching region is dominated by f(η) instead
of ξ(z) as shown in (4.8), we find that the p.d.e. (3.7) collapses to an o.d.e. due
to the approximate similarity transform (4.7). This occurs because both the x- and
z-dependence are captured by the envelope function f(η) and the cross-section ξ(z)
can be factored out as if it were a constant. In particular, hzz ∼ ξfzz in (4.5).
Geometrically, it implies that along the matching line xb(z), the changes in the
azimuthal curvature arise mostly from the z-variation of the envelope function and
not the variation in ξ(z) – the line xb(z) is nearly parallel to the centreline.

Not surprisingly, the resulting o.d.e. for the amplitude function which balances
axial curvature and viscous dissipation is the Bretherton equation for capillary-driven
flow (Bretherton 1961),

− fη + [f3fηηη]η = 0 (4.9)

with the condition f(η → −∞) = 1. From the classical results of Bretherton and the
more accurate approach of Kalliadasis & Chang (1994), we choose an initial condition
in the integration of (4.9) such that f blows up quadratically and the limiting linear
term vanishes exactly, as required by the drop solution

lim
η→∞

hb(η(x, z)) = ξ(z)[ 1
2
âη2 + ĉ], (4.10)

where â = 0.64304 and ĉ = 2.897. We shall match this back solution to the drop
solution (4.3) along a local expansion of xb(z) about the centreline

xb(z) ∼ −x0
b + 1

2
κbz

2, (4.11)

where κb is the positive transverse curvature of the back face representing convexity
and the origin of the centreline is chosen to be the tip of the front matching line
xf(z), to be introduced later. We shall require the transverse curvature and the normal
derivatives to match here as in the classical Bretherton matching (Bretherton 1961)

∇2(hb − hd)|x=xb(z) = 0, (4.12)(
∂

∂x
− dxb

dz

∂

∂z

)
(hb − hd)|x=xb(z) = 0. (4.13)

Matching of the height is not carried out, because it occurs at a higher order.
Consider now the front region II. The steepened front of the drop implies that the

matching in front should be the dominant height and the normal derivative since the
curvature is small. Consequently, the scalings (4.2) for region I imply that the normal
derivative of the front region II should be of order α|β|−1. The only compatible
scalings are then z ∼ O(1), h ∼ O(1) and

x ∼ O(|β|α−1) (4.14)

which is small as α ∼ |β|n where 0 < n < 1/2. Comparing (4.14) to (4.2) and (4.8), it
is clear that the length of the front matching region II is much shorter than that of
the back region III due to the steepened front. The length scales of all three regions
are shown in figure 9.

If we choose the origin in x to be the front edge of the drop solution (4.3), then
the front matching line xf(z) also begins at x = 0, xf(0) = 0. Because the dominant
derivative for the drop solution in this region is hx�hxx, the drop interface has a
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nearly linear slope with respect to x in this region as seen in figure 9. We shall hence
discard the axial curvature term (h3hxxx)x in (3.7) for this front matching region. If
one decomposes hf = ξ(z)g(x, z) as before, this implies that g does not vary much
along the front matching line xf(z). This is supported by a matching region that is
almost perpendicular to the centre axis in figure 9 – the envelope function g(x, z)
does not vary much within this narrow band. Consequently, we choose the opposite
of what we have done for the back – the variation in z of hf is concentrated in ξ(z)

hz ∼ ξzf, hzz ∼ ξzzf,

which simplifies (4.5). Although the higher curvature term (h3hxxx)x can be omitted
from (3.7) in this front matching region, the rapid linear rise in the rivulet amplitude
implies that, unlike the back rivulet, the mean-flow term α(h3)x and the gravitational
term ∇ · (h3∇h) should still be retained. We shall also not carry out an explicit scaling
of the matching region as in (4.7) abut simply substitute hf = ξ(z)g(x, z) into (3.7)
and neglect all z-derivatives of g(x, z) to obtain the back-rivulet equation

− (αc)ξ2
0ξgx + αξ3(g3)x + ξ3β[g3gx]x + g3gxx(ξ

3ξz)z = 0. (4.15)

Unlike (4.9), the p.d.e. (3.7) does not collapse into an o.d.e. Nevertheless, (4.15) is
an o.d.e. for g in x with coefficients that are dependent on z. Analytic estimate of
the solution to this equation is far simpler than a p.d.e. It should be solved with the
condition that g(x→∞, z) = 1.

The decomposition of hf into ξ(z) and g(x, z) requires further scrutiny. Letting
g(x, z) = 1 + ψ(x, z) and expanding (4.15) to linear order in φ, we obtain

ψx = −αp
β

[
cξ2

0

3ξ2
− 1

]
ψ, (4.16)

where

p(z) =
3βξ

ξ(ξ − 2β)− 3ξ2
z

. (4.17)

The condition that ψx must be negative such that the rivulet can grow from the
straight rivulet to the drop in the −x-direction then requires that c > 3 ( since the
centreline amplitude ξ0 is larger than ξ(z)) and p(z)/β > 0. The first condition is
always satisfied since (αc)2/3 ∼ α/|β|1/2�1, which implies that c�1 since α is order
unity or smaller. The second condition p(z)/β > 0 is satisfied if cos z > 0.5(3 + β2)1/2.
This implies that the decomposition is only valid in some neighbourhood of the
centreline at z = 0 where the lubrication expansion is most correct. We shall hence
expand in z to O(z2) and match the solutions to this order in z only. This is consistent
with the expansion of the back matching line in (4.11). Because our representation
of the front-rivulet solution holds only near the centreline, we shall focus first on the
centreline such that p = p0 and ξ = ξ0 = 1 + β. We note that the width B increases
with increasing β, representing higher gravitational pull. The value β = 0 corresponds
to a rivulet cross-section that is exactly the top half of the cosine function.

Because a similarity transform that reduces the back-rivulet equation to (4.9) does
not exist here for the front-rivulet since the scalings do not permit omission of terms
that allow a self-similar transform, we shall need to solve for g(x, z) at every z-position
or, more precisely, to O(z2) about the centreline. We do so by writing (4.15) as

(g−pgx)x = − α
β

[(g−p)x −
cp

3(p+ 2)

(
ξ0

ξ

)2

(g−p−2)x]. (4.18)
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We note that p(z) = −3 if ξ is constant and it is the azimuthal curvature of the
rivulet cross-section ξ(z) that renders p(z) a function of z. Even at the centreline,
p(z = 0) = p0 = 3β/(1− β) is not −3 due to the azimuthal curvature. The behaviour
of g as x → −∞ is determined entirely by p(z). The asymptotic behaviour of (4.18)
at the centreline as x → −∞ and f → ∞ can be readily obtained. For p0 > 0, one
obtains

g ∼
[
g

1−p0

0 +
α

β
(1− p0)

(
cp0

3(2 + p0)
− 1

)
(x0 − x)

]1/(1−p0)

, (4.19)

where x0 and g0 are arbitrary reference points. It is then clear that g blows up at

x∞ = x0 − g1−p0

0 /

[
α

β
(p0 − 1)

(
cpo

3(p+ 2)
− 1

)]
< x0

if p0 > 1 or equivalently, β > 1/4. For 0 < p0 < 1 where

0 < β < 1/4 or π/2 = 1.571 < B < 1.824 (4.20)

g(x, 0) grows continuously to infinity in the power |x|1/(1−p0) as x approaches negative
infinity. For p0 < 0 or β < 0, g does not grow to infinity at all but saturates at a
constant value as x approaches −∞. To allow matching with the drop solution hd, f
must grow to infinity and this rules out the case of negative β. However, it must grow
in such a manner that it can match with the drop solution whose curvature is small.
This can never happen for β > 1/4 when f grows as |x− x∞|−σ where σ = 1/|p0− 1|.
When g is large in this case, gxx is much larger than gx which is distinctly different
from the behaviour at the steepened front of the drop solution hd.

Hence, front matching is only possible if (4.20) is satisfied. Condition (4.20) yields
the surprising result that while the rivulet amplitude can vary over several scales, the
normalized rivulet width B, which is independent of z, is bounded within the narrow
range (1.571, 1.824)! Since p0 = −3 for a flat film, this also implies that a drop can
only be sustained when the azimuthal curvature of the rivulet is present. Physically, it
implies that, unlike the drop region where the normal gravitational pull is countered
by both the axial curvature due to gravity steepening and the azimuthal curvature,
only azimuthal curvature cancels the gravitational pull in the front rivulet. When β
is negative, the gravitational pull is smaller than the azimuthal capillary force and
the interface cannot grow to meet the drop solution. When β is in excess of 1/4,
the gravitational pull exceeds the azimuthal capillary force and the interface grows
too rapidly to allow matching. In order to get a steady solution in this case, the
matching must occur at infinite height. Physically, this means that the drop cannot
drain sufficient fluid into the front rivulet to sustain a steady configuration. The drop
will continue to grow since it is still sucking liquid from the back rivulet and it will
fall off from the rivulet as a jet. This is the jet mechanism at high flow rate and it
occurs at β = 1/4 or B = 1.824 of condition (4.20). The effect of gravity steepening
in increasing the front normal curvature of the hump in (4.3), which we have yet
to resolve, and preventing further growth due to gravity can only be successful if
(4.20) holds. Otherwise, no amount of gravity steepening can prevent fall-off. It is
a necessary condition for a steady drop solution. The critical condition of β = 1/4
is hence a simple criterion derived from fundamental considerations about the front
rivulet.

Even when criterion (4.20) is satisfied, the existence of the drop solution is not
guaranteed. All the matching conditions must be satisfactorily met to allow the
complete construction of the entire drop spanning the various scales of the drop and
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front and back rivulet sections. Since the front-rivulet equation does not collapse into
an ordinary differential equation like the Bretherton equation for the back, it must
be solved explicitly in both x and z. To this end, we expand the front matching locus
about z = 0 to yield

xf(z) ∼ −κfz2/2, (4.21)

where κf is positive and the centre location of this front matching line has been set
to zero to affix the origin of the x-coordinate. A similar expansion of the rivulet
amplitude g (x, z) at the front matching locus yields

g(xf(z)) ∼ A1 + B1z
2/2. (4.22)

These two expansions add three additional unknowns, κf, A1 and B1, to the problem.
Integrating (4.18) once and invoking the condition that g = 1 must be a solution, one
obtains

gx = − α
β

{(
cpξ2

0

3(p+ 2)ξ2

)
(gp − g−2) + 1− gp

}
∼ − α

β
{γ + 1

2
z2(γ1 + B1γ2)} (4.23)

after expanding to O(z2) where

γ =
cβ

2 + β

(
A
p0

1 −
1

A2
1

)
+ 1− Ap0

1 ,

γ1 =
(9 + 2β)

(1 + β)(1 + β/2)
[γ + A

p0

1 − 1] + p0

(
7 + β

1− β2

)
lnA1

[
γ − 1 +

cβ

2 + β

1

A2
1

]
,

γ2 =
p0

A1

[
γ − 1 +

c

3A2
1

]
are constants containing unknowns A1 and c.

The behaviour of the front solution hf = ξ(z)g(x, z) to O(z2) near the front matching
locus can then be extracted from (4.21), (4.22) and (4.23):

hf ∼ (ξ0 − 1
2
z2)[g(xf(z)) + (x− xf(z))gx(xf(z))]

∼ A1ξ0− 1
2
z2(A1−B1ξ0)− (x+ κfz

2/2)(α/β){ξ0γ+ 1
2
z2[ξ0(γ1 +B1γ2)− γ]}. (4.24)

The front matching involves only the height and the normal derivative since the
curvature is negligible,

(hf − hd)|x=−κfz2/2 = 0, (4.25)(
∂

∂x
− dxf

dz

∂

∂z

)
(hf − hd)|x=−κfz2/2 =

(
∂

∂x
+ κfz

∂

∂z

)
(hf − hd)|x=−κfz2/2 = 0. (4.26)

The drop solution (4.2) can be written as

hd =
A− αx
β

ξ(z) + cos
( π

2B
z
){

C0 sin

[
1−

( π
2B

)2
]1/2

x+ Do cos

[
1−

( π
2B

)2
]1/2

x

}

+

∞∑
n=1

cos λnz(Cn sin h
(
λ2
n − 1

)1/2
x+ Dn cos h

(
λ2
n − 1

)1/2
x). (4.27)

Note that B is very close to π/2. Due to the drop scaling x ∼ |β|−1/2, exponential
terms for n 6= 0 in (4.27) decay very rapidly. Hence, in order for the amplitude
of the drop solution to remain finite terms must vanish to leading order and only
near-resonant terms with n = 0 should be considered.
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This simplifies the drop solution to

hd =
A− αx
β

ξ(z) + ξ0 cos
( πz

2B

){
C sin

[
1−

( π
2B

)2
]1/2

x+ D cos

[
1−

( π
2B

)2
]1/2

x

}
.

(4.28)

The O(z0) and O(z2) terms of the matching conditions (4.12), (4.13), (4.25) and (4.26)
then provide eight equations for nine unknowns A,C,D, c, x0

b, κb, κf, A1 and B1.
Solution of these equations yields a family of drop solutions h(α, β; c) parameterized

by the speed c for a given set of α and β. It is possible that a unique drop solution
exists for a given set of α and β and only one member of the family provided by the
leading-order expansion is the true solution. However, the higher-order expansion to
break this degeneracy is too tedious to carry out. Instead, we seek an approximate
sufficient condition when the entire family of drops becomes physically unrealizable.
While this is a sufficient condition, we shall demonstrate using experimental data
that it is a very accurate estimate. The reason for this is that the range of c that
parameterizes the family is narrow.

For the drops to be feasible, the centreline azimuthal curvature and the transverse
curvatures of the back and front edges must obey the following convexity inequalities,

hzz 6 0, κb > 0 and κf > 0. (4.29)

With some straightforward but tedious algebra, we are able to show from the eight
equations that the first two inequalities are always satisfied while the last one is only
satisfied for drops with speeds below a critical speed c∗(α, β). This is consistent with
the pinching mechanism observed experimentally in figure 4(c and d) where κf clearly
changes sign when the drops begin to fall off. Capillary pinching develops as soon
as the front surface becomes concave such that the cross-section resembles a necking
two-dimensional pendent drop. Such a cross-section is beyond the description of our
lubrication equation but the reversal of the front curvature is captured.

We are unable to provide an explicit expression for c∗(α, β). Instead, an equality
α < F(β, (αc)2/3β1/2/α) is derived in the Appendix for drops with negative front-edge
curvature κf . A tight upper bound on F is also found in the Appendix for F at large
(αc)2/3 to yield

α = tan θ sinB/ tanϕ < L(β)β1/6, (4.30)

where L(β) is a weak function of β

L(β) =
4â

3π

{
9− β
2Sm

}2/3

(1 + β)1/3(1− 3
2
mβ)

{
1 +

2(1 + β)

3π
(1− 3

2
mβ)

}2

. (4.31)

Inequality (4.30) together with the constant-flow-rate condition (3.3) give a relation-
ship between flow rate and the critical inclination angle θc that is parameterized
by β. However, further simplifications can be made. The parameters in L(β) are
m = [1− (π/2B)2]/β, S = [1− (1 +β)(π/2B)2]/β and â = 0.6430 such that L(0) = 1.5
and L(1/4) = 1.2 – very little variation within the range of interest. The quantity L(β)
can hence be taken as 1.5. The relative scaling of α ∼ β1/6 is then consistent with the
prior estimate of βn with 0 < n < 1/2. Over this range of β, sinB ranges from 1.0 to
0.97 and can be considered to be unity. These simplifications produce a very concise
form of (4.30) that parallels (4.20),

1.5β1/6 > tan θ/ tanϕ (4.32)
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showing a unique (tan θ/ tanϕ) dependence absent in the jet criterion. It is also clear
by comparing the two criteria (4.20) and (4.32) that they cross over at approximately
θ = ϕ.

In the limit of small β, the pinch-off criterion of (4.32) becomes in dimensional form

q >
4

9

(g
ν

)( tan θ

cos θ

)(
σ

ρg

)2

(tanϕ)3

{
1 +

9

8
π

(
tan θ

tanϕ

)6(
1

L(0)

)6
}

(4.33)

which can be used to estimate the static contact angle ϕ if it is not known. In contrast,
the jet condition of β > 1/4 in (4.20) yields

q > 1.079
(g
ν

)( tan θ

cos θ

)
(tanϕ)3

(
σ

ρg

)2

(4.34)

without the distinctive (tan θ/ tanϕ)6 dependence of the pinch-off criterion at small
β. The latter is stronger than the jet criterion at small α, corresponding to smaller
inclination angles θ, θ < ϕ. This is consistent with our observation that low-flow-rate
fall-off at small θ is via the pinch-off mechanism when the front steepening mechanism
is relatively weak.

5. Comparison and discussion
As a final check on the validity of our long-wave equation for near-critical drops

with large axial slope, we compare our theoretical prediction of the drop solution in
region I of (4.28) and the asymptotic rivulet solutions in regions III and II of (4.10)
and (4.24) to an actual drop with θ slightly greater than θc in figure 7. The back
extrapolation of the back-rivulet solution in region III shows that it captures the
axial curvature of the drop solution I. This graphic depiction of matched solutions
is similar to that carried out by Bretherton (1961). We use the length of the drop
as the final equation to specify all nine unknowns in (4.28). As is evident, while the
amplitude of the drop is clearly overestimated by the long-wave approximation and
the variation in x is clearly not small, the slope of the front face and the curvature
of the back face are well-estimated. Since these are the only quantities used in the
matched asymptotic analysis, this suggests our estimates for fall-off are very accurate
bounds. Although the long-wave equation cannot capture the full interfacial structure
of a drop near fall-off, it captures the all-important cross-section azimuthal curvature
and the mean-flow-induced axial steepening that counter the gravitational effects
which induce fall-off. The two bounds (4.32) and (4.34) are imposed on the raw
fall-off data of figure 6 where the asymptotic behaviour of the critical curve at small
flow rate is found to be approximated by the pinch-off criterion (4.33) if a static
contact angle of ϕ = 55◦ is used. The same value also fits the β = 1/4 jet criterion
of (4.34). This is within the acceptable range for the static contact angle of the
solution (50◦ to 70◦) and is closer to the receding value as expected. We also note
that the limiting pinch-off curve (4.33) simply corresponds to β = 0 and hence the
critical curves are bound between β = 0 and β = 1/4 as shown in figure 6. The two
curves intersect at θ ∼ 51◦ for the given contact angle ϕ = 55◦. The unmistakable
(tan θ/ cos θ) dependence of q for the jet mechanism (4.34) is very distinct at high flow
rates. We hence use the normalized coordinates suggested by (4.32) and (4.34) to scale
all our fall-off data, using the β = 0 and 1/4 asymptotes to estimate the static contact
angle ϕ. As seen in figure 10, the scaled data reflect the different scalings of the two
mechanisms. There is some cross-over at the transition point at θ ∼ ϕ between the
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Figure 10. The normalized data for the jet and pinch-off mechanisms.

two mechanisms but even the cross-over is well described by (4.32) and (4.34). The
viscosity of our glycerin–water solution changes by as much as 25% for the recorded
data but we did not vary ϕ in our experiments. This is becouse of our desire to
remove inertia from the fall-off phenomenon. As a result, viscous partially wetting
fluids with non-zero receding contact angles are required for realistic experimental
conditions. We are unable to find such viscous fluids without introducing viscoelastic
effects. Nevertheless, we expect our theory to predict the critical fall-off condition of
any non-elastic viscous fluid whose physical properties are known.

This work was supported by grants from DOE and NASA. The original idea
was conceived while H.-C. C. was visiting DAMTP, Cambridge. The hospitality and
suggestions of H. K. Moffatt during that period are gratefully appreciated.

Appendix A. Derivation of the pinch-off criterion
The four front matching conditions in (4.25) and (4.26) allow us to express the

unknowns A,C, B1 and κf in terms of three of the remaining five unknowns. Only
the expression for κf is pertinent,

κf =
(α/β)[(1− λ2

0ξ0)(γ − 1− Dγ2)/ξ0 − γ1]

D(1− λ2
0) + (α/β)2γγ2

, (A 1)

where λ0 = (π/2B) is the wavenumber of the surviving resonant term in the drop
solution of (4.3) and (4.28) and the γi constants as functions of A1 and c are given
in (4.23). It is also easy to see from (4.23) that γ2 is positive and γ1 is larger than
(1− λ2

0ξ0)(γ − 1)/ξ0 for 0 < β < 1/4. Hence, D must be negative to ensure a positive
κf .

On the other hand, the back matching conditions (4.12) and (4.13) yield an explicit
expression for the curvature of the back matching locus for (αc)2/3�α, which has
been shown to be true,

κb =

(
2 + β/2

1 + β

)1/2

. (A 2)
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The back matching also allows us to eliminate x0
b and obtain the following two

equations for the three remaining unknowns A1, D and c:

sinω + ω sin ε = ξ0 cos ε
(
1− 3

2
mβ
)
− sin ε

(
3π

2
− ε− ĉ− A1

α
β3/2m1/2

)
, (A 3)

γ =
cβ

2 + β

(
A
p0

1 −
1

A2
1

)
+ 1− Ap0

1 = 1 +
cosω

sin ε
, (A 4)

where D has been replaced by ω through the formulae

D = −
(

α

β3/2m1/2

)(
sinω

sin ε

)
, (A 5)

tan ε = K(β)
α

β1/2
(αc)−2/3. (A 6)

The parameters in (A 3) to (A 6) are m = (1−λ2
0)/β,K(β) = ξ0[(3m

1/2)/(2â)]3/2, and
â and ĉ are the Bretherton constants in (4.10). Because of their definitions in (A 4) to
(A 6), ε and ω are bounded between 0 and π/2. Equation (A 4) can be rearranged
into

c =

(
2 + β

β sin ε

)
A2

1

(Ap0

1 sin ε+ cosω)

(Ap0+2
1 − 1)

(A 7)

and invoking the definition of K(β), we get

(α/β3/2)1/2 = c(tan ε)3/2/K(β). (A 8)

A convenient bound on ε can now be obtained. Since a positive κf is equivalent to a
negative D and a positive ω from (A 1) and (A 5), (A 3) indicates that ω is positive
only if ε is small and (A 3) also yields the condition

tan ε <

(
2ξ0

3π

)(
1− 3

2
mβ
)
6

2

3π
(A 9)

for βε(0, 1/4).
We are now in position to impose a bound for positive κf . From (A 3) and the

definitions of K(β) and γi, it is clear that the denominator in (A 1) for κf is always
positive. Consequently, κf is positive only if the numerator satisfies

(γ − 1− Dγ2)(1− λ2ξ0)/ξ0 > γ1. (A 10)

Using the definitions of γ1 and γ2, (A 4) for γ and (A 5) and (A 7) for D and c, this
inequality becomes

Sβ cosω

ξ0

+
S(2 + β)2 sinω

ξ0(1− β)K2m1/2 cos3 ε

(
A
p0

1 sin ε+ cosω

A
p0+2
1 − 1

)2

×A3
1

(
3 cosω +

2 + β

β

[
A
p0

1 sin ε+ cosω

A
p0+2
1 − 1

])

>
2(9 + 2β)

(2 + β)(1 + β)
(Ap0

1 sin ε+ cosω) + p0

7 + β

1− β2
A
p0

1 lnA1

(
A2

1 cosω + sin ε

A
p0+2
1 − 1

)
(A 11)

where S = (1− λ2
0ξ0)/β which is close to (4/π)− 1 ∼ 0.27 for small β. The left-hand

side of the above inequality is decreasing function of the amplitude A1 at the front
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matching point while the right-hand side increases with increasing A1. Because of the
magnitude of S and K2(∼ 25), this inequality can hold only for amplitude A1 values
close to unity. We hence set A1 = 1 + η such that η�1 and expanding (A 11) to
leading order in η, we obtain the estimate

η <

(
Q(β)

β

)1/3

η∗(ω, ε), (A 12)

where Q(β) = (S(1− β)3)/(m1/2K(β)(9 + β)) ∼ 10−3 for β ∈ (0, 1/4) and

η∗(ω, ε) = (sinω)1/3(cosω + sin ε)2/3/ cos ε. (A 13)

It is easy to show that η∗(ω, ε) has a maximum at cosω =
√

2/3 for small ε which
was established in (A 9). Consequently, a good estimate for the maximum value of η∗
is ηmax = 21/3/

√
3. A tight upper bound for (A 12) is then

η <
21/3

√
3

(Q(β)/β)1/3. (A 14)

Since ε is small, sin ε ∼ tan ε ∼ ε and cos ε ∼ 1 and an expansion of (A 3) and
(A 4) allows explicit expressions for ε and η in terms of ω, α and β,

ε ∼ ξ0(1− 3mβ/2)− sinω

(3π/2) + ω − β3/2m1/2(ĉ− 1)/α
, (A 15)

η ∼ (cosω + ε)(1− β)K(β)(ε/α)1/2β−1/4. (A 16)

Hence, both ε(ω) and η(ω) are decreasing functions of ω and their maximum values
lie at ω → 0. Equation (A 8) can also be expanded to yield

c ∼ (α/β3/2)1/2K(β)ε−3/2. (A 17)

Equations (A 16) and (A 17) now specify a family of solitary hump solutions param-
eterized by ω. The member with the minimum speed at c(ω → 0) corresponds to one
with a maximum amplitude of 1 + η(ω → 0) at the front matching line as seen from
(4.22). This limiting member will have a concave front face and fall off if (A 14) is
violated,

η(ω → 0) >
21/3

31/2
(Q(β)/β)1/3 (A 18)

which, with (A 15) and (A 16), gives a critical condition in terms of α and β

α < β1/6L(β) +
2(ĉ− 1)

3π
m1/2β3/2, (A 19)

where L(β) is given in (4.31) of the text. For β ∈ (0, 1/4), the second term in (A 19)
can be omitted and one obtains the simple expression (4.30) in the text.
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